

让工业文明演绎生活之美

金属双张检测器 MDSC-8000S

用户手册

阿童木(广州)智能科技有限公司 Atonm (Guangzhou) Intelligent Tech. CO.,LTD

地址: 广州市高新技术开发区科学城南翔一路 68 号 客服: 400-0088-976 www.atonm.com

前言

资料简介

感谢您购买阿童木(广州)智能科技有限公司自主研发、生产的 MDSC-8000 系列金属双张检测器,MDSC-8000S 金属双张检测器专用于冲 压行业的自动送料系统中,用来检测各种金属片料厚度差别(如铁片和磁性片料),能有效防止双张或多张片料进入下一工艺环节,产生不 良产品或损坏模具。本产品包含检测主机和传感器两部分。

本手册主要描述 MDSC-8000S 系列金属双张检测器的规格、特性及使用方法等。在使用本产品前,敬请您仔细阅读本手册,以便更清楚地 掌握产品的特性,更安全地使用本产品。

关于手册获取

本手册不随产品发货,如需获取电子版 PDF 文件,可以通过以下方式获取:

- 关注"阿童木智能科技"公众号,菜单栏"说明书"里,可搜索说明书并下载。
- 使用手机扫产品机身二维码,获取产品配套手册。

安全建议

本手册包含正确操作 MDSC-8000S 所需的所有信息。

它是为技术人员编写的。

未经授权擅自篡改设备,尤其是忽视本手册中的警告,可能会导致设备故障和损坏。只有授权人员才能对设备进行更改并进行电缆连接,尤其是电源。

如果有必要(例如在服务或维修的情况下)在单元内进行测量,则应遵守所有常规的事故预防程序。只能使用专业的电动工具。

安全注意事项

- 请确保使用环境符合硬件规范中的限制条件(详情请参考"技术参数");
- ◆ 请勿安装于磁场过强、阳光直射、高温、强烈机械振动的场所,请勿在有易燃气体、蒸汽或粉尘场合使用本产品,否则有爆炸危险;
- ◆ 请勿在可能发生温度剧烈变化或者湿度很大的环境中使用本产品,否则可能导致设备内部产生冷凝水,导致设备损坏;
- ◆ 如果连续进行多次上磁测量操作,则测量操作时间不应超过 10 秒。建议保持恢复时间至少为测量操作时间的两倍;
- ◆ 请确保所有电缆接头都牢固连接到本产品上。如果连接松动,可能会产生错误的输入或输出信号;
- ◆ 在使用过程中,避免使用工具去触摸显示面板,对外力过大造成面板损坏由用户负责;
- 为避免触电,在连接本产品的电源前,请先切断电源;
- ◆ 本产品输入电源是 DC24V,请定时检查 DC 电源是否稳定,为了避免系统受到电源干扰,我们强烈建议您使用单独的隔离电源供电, 推荐使用通过 CE 认证的电源;
- ◆ NPN、PNP 输出接口最大只能接 48V/50mA 的直流系统;
- ◆ 传感器走线和动力线分开,特别是有变频器、伺服器、大功率电机等强干扰的地方;
- ◆ 传感器线缆不可被剪断或驳接,如果线缆过长,可将其卷入电柜内;若长度不足,可进行定制;
- ♦ 片料的学习位置和实际生产的检测位置要尽量一致;
- ◆ 每次更换片料,只要有不一致的地方(包括但不限于材质、厚度、外形、检测位置等)都必须重新学习。

目录

目录

前言	
1 技术参数	3
1.1 主机技术参数	3
1.2 传感器参数	
1.3 产品尺寸图	
1.3.1 主机尺寸图	4
1.3.2 嵌入式开孔尺寸图	5
1.3.3 嵌入式安装深度尺寸图	5
1.3.4 传感器尺寸图	6
1.3.5 传感器电缆尺寸图	6
1.3.6 传感器支架尺寸图	6
2 系统描述	8
2.1 面板说明	8
2.2 显示屏界面说明	9
2.2.1 工作界面	
2.2.2 设置界面	
2.2.3 传感器参数设置界面	10
2.2.4 传感器示教界面	
225 系统参数设置界面	12
23 外部接口说明	
231 外部接口示意图	13
232 申源接口脚位图	13
233 通讯期位图	10 11
234 传感器脚位图	14
235 输入和输出接口脚位图	۰۰۰۰ ۲۰ 1 <i>4</i>
2.0.5% 服火 化 服 四 2 回 2 回 2 回 2 回 2 回 2 回 2 回 2 回 2 回 2	
2/1 1 零张 单张 双张输出接口与继由器接线图	10
2.4.2 零张、单张、双张输出接口与回C接线图	
2.4.2 平式、平式、深葉電出版1910 及2.4.1 2.4.3 外部 IC 洗择片料组别接口与 PIC 接线图	
	10
2.4.4 7 印 10 小秋风线回	
2.4.5 杨重仪配出了马卡尼及龙国	10
2.5 病量引引 m	
3 又表现仍	20
3.1 版文农师91	
5.2 エルマス	20
5.5 F 念留又表现仍	
	21
4 <u>水, 小¹ </u> <i>i</i> 1 <i>i</i> 6	
4.1 マ芯砧区用フム	۲۲ در
4.2 17心脏学数于如何13	
4.4.1 面似于动切换	
4.4.2 IVIUUUUS 心えるシリオ	
4.4.3 71 型 ∪ 切決	
4.5 パロ ∪ 小牧	
4.0 7°中小我关闭	
4.(
5 以笛叹悍灰小	
0 壮介	
(不)でで、	
0	

1 技术参数

1.1 主机技术参数

	主机技术参数			
	主机型号	MDSC-8000S		
	工作电压	24V DC, +6V/-2V		
	消耗功率	60W(测量:<60 W,空闲:<12 W)		
	瞬间电流	5A 1ms		
响应速度		200pcs/min		
	环境温度	0°C∼50°C		
	主机外观尺寸	132 x 116 x 78.5(mm)		
κı	嵌入式安装的开孔尺寸	121 x 105(mm)		
防治等级	后壳	IP20		
防护夺级	前面板外壳	IP65		
重量		730g		

表 1-1: 主机尺寸与技术参数

特性:

- 200 组材料类别。
- 12个光耦隔离输入,具有同一公共端。
- 4 个 NPN 或者 PNP 输出(出厂默认 NPN),最大负载能力:48VDC,50mA。

注意 如果是感性负载,应使用线圈保护二极管。 否则,关闭感性负载产生的过电压可能会破坏信号输出。

● RS485 通讯接口,在系统设置内更改。

1.2 传感器参数

表 1-2: 传感器尺寸与技术参数

传感器技术参数		
磁性材料测量范围	0.2 ~ 4.0mm	
环境温度	0°C~60°C	
防护等级	IP65	
重量	350g	
传感器电缆	拔插,16米	

1.3 产品尺寸图

1.3.1 主机尺寸图

图 1-1:主机尺寸图

1.3.2 嵌入式开孔尺寸图

图 1-2: 主机嵌入式开孔尺寸图

1.3.3 嵌入式安装深度尺寸图

1.3.4 传感器尺寸图

型号: SE-8200SC-M42

0

—____32.0— (俯视图)

图 1-4: 传感器尺寸图

1.3.5 传感器电缆尺寸图

型号: CAB-8200S-L16.0

32.0

1.3.6 传感器支架尺寸图

图示			
型号	BRT-F42	BRT-C42	BRT-F42-S
适用传感器	所有单探头: M42 x 1.5		
总高度(无负载)	119mm	144mm	175mm
弹簧最大行程(约)	25mm	35mm	60mm
重量	0.6Kg	0.55Kg	1.02Kg
吸盘直径	91mm		

BRT-F42 尺寸图:

图 1-6: 传感器支架 BRT-F42 尺寸图

BRT-C42 尺寸图:

图 1-7:传感器支架 BRT-C42 尺寸图

BRT-F42-S 尺寸图:

2 系统描述

2.1 面板说明

2-1:主机面板示意图

表 2-1: 主机操作面板构成说明

序号	部件名称	序号	部件名称
1	显示区	6	双张指示灯
2	下移键	7	工作指示灯
3	上移键	8	菜单键
4	零张指示灯	9	确认键
5	单张指示灯	-	-

按键信息

表 2-2: 按键说明

按键	名称	功能
	上移键	参数调整或者移动光标
	下移键	参数调整或者移动光标
ENTER	确认键	确认或者进入另一级菜单
MENU	菜单键	进入或者退出编辑模式

状态指示灯

下表中 之 表示灯亮, ● 表示灯灭, 之 表示闪烁。

表 2-3: 面板指示灯说明

指示灯状态		状态说明
0 零张指示灯		灯灭: 非零张片料
	ÌOÉ	灯亮:零张片料
		闪烁:示教时进行零张学习
1 单张指示灯		灯灭: 非单张片料
	ÌOÉ	灯亮:单张片料
		闪烁:示教时进行单张学习
2 双张指示灯		灯灭: 非双张片料
		灯亮:双张片料
POWER 工作指示灯		灯亮:运行

2.2 显示屏界面说明

2.2.1 工作界面

表 2-4: 工作界面说明

序号	名称	说明
1	片料组别	1~200
2	传感器检测材料属性	磁性/无
3	单张阈值	大于该值,小于双张阈值,控制器输出单张信号
4	双张阈值	大于该值,控制器输出双张信号
5	实时值	传感器当前采集到的信号值

2.2.2 设置界面

操作说明:

- 长按 MENU 键 3 秒,进入设置界面。
- 短按 MENU 键,进入编辑状态对应项闪烁,按▲、▼键调整参数,短按 MENU 键,退出编辑状态。
- 非编辑状态下,按▲、▼键轮巡各个选项(反白显示),对应选项短按 ENTER 键,进入下一级页面或者返回上一级页面。

表 2-5:设置界面说明

序号	名称	说明
		1号传感器属性
1	传感器1	无:关闭该传感器;
		磁性:传感器检测导磁性材料。
2	系统设置	通信参数及材料组号,系统软件版本,恢复出厂等设置功能。
3	示 教	选择传感器1进行材料学习,零张、单张识别,生成单双张阈值。
4	返回	返回上级菜单。

2.2.3 传感器参数设置界面

操作说明:

- 短按 MENU 键,进入编辑状态对应项闪烁,按▲、▼键调整参数,短按 MENU 键,退出编辑状态。
- 非编辑状态下,按▲、▼键轮巡下面 6 个选项(反白显示),在返回项上短按 ENTER 键,返回上一级页面。

1	序号:	1 唐	属性:	磁性	←2
3→	单张:	10	双张	: 40	- 4
5 - >	频道:	04	灵敏	: 02	←6
7→	延时:	10	返回	: 是	- 8

序号	名称	说明
1	序号	传感器序号,此界面上不可设置。
2	属性	传感器检测导磁性材料,此界面上不可设置。
3	单张	材料单张阈值,超过此值,小于双张阈值,输出单张信号,可以手动设置。
4	双张	材料双张阈值,超过此值输出双张信号,可以手动设置。
5	频道	程序内部挡位值,非专业人士不要设置。
6	크섮	传感器内部数据滤波处理值(1~99),可以手动设置,默认是 2,越小灵敏度越
0	<u> </u>	高;越大灵敏度越低,抗干扰能力越强。
7	7 延时	结果输出保持时间(1~99),5ms 时基单位,可以手动设置,默认是 10,即 50ms
Ĩ		保持时间。
8	返回	返回上级菜单。

表 2-6: 传感器参数设置界面说明

2.2.4 传感器示教界面

操作说明:

按▲、▼键轮巡返回和学习选项(反白显示),短按 ENTER 键返回上级菜单或者进入零/单张学习。单张学习完成后自动跳回返回
 项。

表 2-7: 传感器示教界面说明

序号	名称	说明
1	序号	传感器序号1,此界面上不可设置。
2	返回	返回上级菜单。
3	零/单张学习	学习零张时显示零,学习单张时显示单;开始/进行中/完成 表示学习时候状态。
4	单张	学习完成后的单张材料阈值,此界面下不可设置。
5	双张	学习完成后的双张材料阈值,此界面下不可设置。
6	频道	学习完成后的挡位值,此界面下不可设置。
7	动态	学习时实时采集值,此界面下不可设置。

2.2.5 系统参数设置界面

操作说明:

- 短按 MENU 键,进入编辑状态对应项闪烁,按▲、▼键调整参数,短按 MENU 键,退出编辑状态。
- 版本项没有编辑状态,短按 ENTER 键进入显示版本信息。
- 重置项没有编辑状态,短按 ENTER 键进入恢复出厂界面。
- 非编辑状态下,按▲、▼键轮巡 8 个选项(反白显示),在返回项上短按 ENTER 键,返回上一级页面。

序号	名称	说明		
1	组号	材料组存储序号 1~200,可以手动设置。		
	输出	输出信号极性,可以手动设置。		
2		0:输出为常开逻辑		
		1: 输出为常闭逻辑		
3	地址	设备通信地址,1250,可以手动设置。		
4	格式	通信格式,8N2、8E1、8O1、8N1, 可以手动设置。		
5	计支	通信波特率,600、1200、2400、4800、9600、19200、38400、57600、115200,		
5	<u>次</u> 平	可以手动设置。		
6	版本	软件版本信息。		
7	重置	恢复出厂设置,此功能会擦除所有材料组的设置信息,请慎重选择。		
8	返回			

表 2-8:系统参数设置界面说明

2.3 **外部接口说明**

2.3.1 **外部接口示意图**

图 2-2: 外部接口示意图

表 2-10: 外部接口构成说明

序号	名称
1	接地端子
2	电源接口
3	通讯接口
4	传感器1接口
5	输入和输出接口

2.3.2 电源接口脚位图

图 2-3: 电源接口示意图

表 2-11: 电源接口脚位说明

②电源接口			
序号	脚位说明		
1	24V		
2	OV		
3	地线		

2.3.3 通讯脚位图

图 2-4:通讯脚位示意图

表 2-12:通讯脚位说明

③通讯接口				
序号 脚位说明				
1	485A			
2	485B			
3	空			
4	485G			
5	空			

2.3.4 传感器脚位图

图 2-5: 传感器脚位示意图

表 2-13: 传感器脚位说明

④ ⑤传感器接口				
序号 脚位说明				
1	P1			
2	地线			
3	P2			

2.3.5 输入和输出接口脚位图

图 2-6:输入输出接口示意图

⑥输入和输出接口					
序号	脚位说明	序号	脚位说明	序号	脚位说明
1	空	10	空	19	空
2	输入公共端	11	空	20	片料组别 IO 选择使能
					线(IN-EN)
3	IO 示教使能线(Teach-EN)	12	IO 示教控制线(Teach-IN)	21	测量片料使能线
4	IN-01	13	IN-02	22	IN-03
5	IN-04	14	空	23	IN-05
6	IN-06	15	IN-07	24	IN-08
7	空	16	输出公共端-(接 0V)	25	IO 示教输出
8	双张输出	17	空	26	单张输出
9	零张输出	18	输出公共端+(接 24V)	-	-

表 2-14: 输入和输出接口脚位说明

2.4 电气控制接线说明

2.4.1 零张、单张、双张输出接口与继电器接线图

2.4.2 零张、单张、双张输出接口与 PLC 接线图

2.4.3 外部 IO 选择片料组别接口与 PLC 接线图

PNP

NPN

2.4.4 外部 IO 示教接线图

示教输入 IO 与 PLC 接线图

NPN

PNP

图 2-9: 示教输入 IO 与 PLC 接线图

示教输出 IO 与 PLC 接线图

图 2-10: 示教输出 IO 与 PLC 接线图

2.4.5 测量使能信号与 PLC 接线图

图 2-11:测量使能信号与 PLC 接线图

加果连续进行多次测量操作,则测量操作时间不应超过 10 秒。建议保持恢复时间至少为测量操作时间的两倍。

2.5 测量时间 **t**_m

测量时间 **t_m 是系统从"测量开始"**到输出信号传递所需的总时间。

传感器测量:

图 2-13: 传感器测量时间示意图

传感器测量时间:指从主机收到测量信号起,至主机输出测量结果的时间间隔(如图 2-13)。

下表为传感器数量与测量时间参照标准:

表 2-15:	测量时间参照表
- LC L 101	

材料	传感器测量时间
磁性材料	<120ms

3 安装说明

3.1 一般安装说明

将主机安装在靠近传感器的位置,使用较短的传感器电缆,相应地暴露在电磁噪声中的时间也较低,因此可能会产生更好的测量结果。 主机应安装在不存在振动且没有额外热量传递到主机中的位置(更好地减少主机中的热量)。此外,主机的安装方式应使其易于打开以 进行维修。在操作过程中,主机和传感器应在操作人员的视觉控制下。

电磁干扰会影响传感器的测量精度。因此,传感器不应安装在产生电磁干扰的设备附近。这种设备例如是变频器、伺服电机或感应式接近开关。

传感器电缆不应直接靠近具有大干扰能力的电缆,例如电源电缆。

3.2 主机安装

在机柜面板安装位置开 121mm x 105mm 长方形安装孔,放入主机,然后在主机左、右开孔位置插入固定卡扣,上螺丝拧紧。

3.3 传感器安装说明

双张检测器的可靠功能在很大程度上取决于传感器的正确安装。应遵循以下安装规则:

- 传感器必须垂直于板材安装并完全接触板材表面。异物不应阻碍接触。
- 传感器和板材表面之间的倾斜或气隙会导致测量错误。
- 可以用薄铁氟龙覆盖传感器表面,以避免损坏金属板表面。但是,这会降低性能,因此不建议这样做。

建议将金属双张检测传感器安装如下图,传感器紧贴金属片料。

图 3-1: 传感器安装示意图

3.4 传感器的错误安装

_

表 3-1: 传感器错误安装示例

错误 传感器没接触片料
错误 传感器没有垂直接触板材,传感器支架显然安装不合格。
错误 第一片和第二片之间存在气隙。 传感器安装在不利的位置。
错误 第一片和第二片之间存在气隙。 传感器安装在不利的位置。
避免拉紧电缆。敷设电缆时要留有足够的间隙。 如果使用柔性传感器支架,必须特别注意传感器插头前面的电缆路线。电缆不应 该有一个弯曲靠近插头。此外,电缆的曲径必须与插头的轴线对称,见附图 。

4 系统应用说明

4.1 传感器使用方法

表 4-1: 传感器设置步骤

序号	步骤	图示
1	将1个传感器接入1号插口,开机,等待进入 工作界面,然后长按 MENU 键3秒,背光点亮, 进入设置界面。	 传感器 1: 无 系统设置: 是 示教: 1 返回: 是
2	短按▲、▼键将光标移动到传感器1的无选项 上,短按 MENU 键进入编辑模式,光标闪烁, 然后按▲、▼ 键设置传感器1的属性为磁性, 设置好后,短按 MENU 键退出编辑模式。	传感器 1: 磁性 系统设置: 是 示教: 1 返回: 是
3	短按▲、▼键将光标移到示教项数字上,数字 显示为 1,短按 ENTER 键进入示教界面。	序号:1 返回:是 零张学习:开始 单张:025双张:075 频道:004 动态:000
4	保持1号传感器下方净空,按▲、▼键将光标 移到开始项上,短按 ENTER 键进行零张学习, 此时变成进行中并闪烁,同时面板3个 LED 输出指示灯闪烁,零张学习完成后,显示"完 成",面板单张指示灯闪烁。	序号:1 返回:是 零张学习:完成 单张:025双张:075 频道:004 动态:000
5	在1号传感器下方放入一张片料并贴紧传感器,然后短按ENTER键进行单张学习,此时显示进行中并闪烁,同时面板3个LED输出指示灯闪烁,单张学习完成后,显示完成,光标跳到返回项,面板单张指示灯常亮。	序号:1 返回:是 单张学习:完成 单张:060双张:088 频道:004 动态:100
6	短按▲、▼键移动移动光标到返回项,短按 ENTER 键返回到上级界面,直到工作界面。	1 磁性 单张: 060 双张: 088 动态: 000
7	使能外部检测端子,1 号传感器即可进行单双 材料检测并输出结果。	1 磁性 单张: 060 双张: 088 动态: 082

传感器输出结果的逻辑关系

- 输出双张信号:传感器检测到双张就会输出双张信号。
- 输出双张信号:传感器未接,开始检测就会输出双张信号。
- 输出单张信号:传感器检测到单张就会输出单张信号。
- 输出零张信号:传感器检测到零张就会输出零张信号。

传感器	输出
0 张	0 张
1张	1 张
2 张	2 张
未接	2 张

表 4-3: 传感器输出结果逻辑关系表

4.2 传感器参数手动调节

在控制运行过程中,如果觉得某个传感器的单张或双张检测不够灵敏或过于灵敏,则可以手动调节单双张的阈值来改善。

序号:	1 唐	属性:	磁性
单张:	60	双张	: 88
频道:	04	灵敏	. 02
延时:	10	返回	: 是

表 4-4: 传感器参数手动调节步骤说明

序号	步骤
1	在设置界面,按▲、▼键移动光标到传感器的选项上,短按 ENTER 键进入传感器参数设置界面。
2	短按▲、▼键将光标移到单张或者双张选项上,短按 MENU 键进入编辑模式,按▲、▼键调整到合适的数值, 短按 MENU 退出编辑模式。
3	某些特殊场合干扰比较大的情况下,还可以调整灵敏度选项,按▲、▼键将光标移到灵敏选项上,短按 MENU 键进入编辑模式,加大数值,短按 MENU 退出编辑模式。
4	短按▲、▼键移动移动光标到返回项,短按 ENTER 键返回到上级界面直到运行界面。

4.3 通信参数设置

表 4-5: 通讯参数设置步骤说明

序号	步骤
1	在设置界面,按▲、▼键移动光标到 系统设置 选项上,短按 ENTER 键进入系统设置界面。
2	短按▲、▼键将光标移到 地址 选项上,短按 MENU 键进入编辑模式,设置合适的 设备地址 ,短按 MENU 键 退出编辑模式。
3	短按▲、▼键将光标移到格式选项上,短按 MENU 键进入编辑模式,设置合适的 通信格式 ,短按 MENU 键 退出编辑模式。
4	短按▲、▼键将光标移到 波率 选项上,短按 MENU 键进入编辑模式,设置合适的 通信波特率 ,短按 MENU 键 退出编辑模式。
5	短按▲、▼键移动移动光标到返回项,短按 ENTER 键返回到上级界面直到运行界面。

4.4 材料组别的切换

4.4.1 面板手动切换

操作步骤:

- 在系统设置界面,按▲、▼键移动光标到组号选项上,短按 MENU 键进入编辑模式,按▲、▼键选则需要的组号,短按 MENU 键退出编辑模式。
- 2. 按▲、▼键移动光标到返回项,短按 ENTER 键返回到上级界面直到运行界面。
- 3. 此时运行界面的组号会随之变化,传感器的属性及单双张阈值也会变化。

4.4.2 Modbus 总线切换

操作步骤:

- 首先设置好通讯参数及设备地址(假设设备地址为 16,具体操作为向设备寄存器 地址 0000H(掉电保存)或 A000H(掉电不保存)写入要切换的材料组编号(范围 1~200)。支持对 0000H 和 A000H 寄 存器的读和写)。
- 2. 向寄存器 0000H 写入要切换的材料组编号 3(03H), 假设设备地址为 16(10H)
- 3. 发送数据(16 进制格式) 10 06 00 00 00 03 CA 8A
- 4. 返回数据(16 进制格式) 10 06 00 00 00 03 CA 8A
- 5. 读寄存器 0000H, 假设本设备地址为 16(10H)
- 6. 则发送数据(16 进制格式) 10 03 00 00 00 01 87 4B
- 7. 返回数据(16 进制格式) 10 03 02 00 03 04 46

注意 频繁写入 0000H 会导致芯片的损坏,如上位机上电就持续频繁写入,须使用 A000H 组。

4.4.3 外部 IO 切换

操作步骤:

- 1. 外部 10 的 IN-01 (LSB) ----- IN-08 (MSB) 代表数据线(范围 0---255,只用 1---200), IN-EN 代表片料组别 10 选择使能线。
- 2. 当 IN-EN 使能线为高电平时(保持 20ms),数据线电平保持不变,代表切换的材料组序号。
- 3. 当 IN-EN 使能线为低电平,数据线无效,不切换材料组。
- 4. 控制时序图如下。

图 4-1: 外部 IO 切换控制时序图

4.5 外部 IO 示教

- 1. 外部 IO 的 IN-08 代表数据线, Teach-EN 代表示教数据使能线, Teach-In 代表示教控制线。
- 选择传感器属性:当 Teach-EN 示教数据使能线为高电平时(使能线为高期间保持不变),数据线电平保持不变,(0---代表关闭 传感器,1---代表传感器导磁属性)。
- 3. 设置好传感器属性,Teach-In 示教控制线为高电平,表示示教开始,进行零张学习。
- 4. 等待外部 IO 的 Teach-Out 变为高电平,则表示零张学习完成。
- 5. Teach-In 示教控制线变为低电平,进行单张学习。
- 6. 等待外部 IO 的 Teach-out 变为低电平,则表示单张学习完成。
- 7. 时序图如下:

图 4-2: 外部示教时序图

4.6 外部示教实例

- a) **外部 IO 示教**:
 - 1. 设备上电,确保连线正确;
 - 2. 设置配方组号(如不需要设置直接跳到步骤 3):
 - 6感器属性选择(如不需要设置直接跳到步骤 4):
 外部 IO 的 IN-08 位准备好数据(传感器: 0---1 无/磁性), Teach-EN 保持高电平 20ms 以上,传感器属性改变。
 - 4. 保持传感器下方净空,Teach-IN 变为高电平,进行零张学习。
 - 5. 等待 Teach-Out 变为高电平,表示零张学习完成,送入一张片料到传感器正下方并贴紧,Teach-IN 再变为低电平,进行 单张学习。
 - 6. 等待 Teach-Out 变为低电平,表示单张学习完成。
- b)**Modbus 总线示教**:
 - 1. 将设备和传感器连接好,通过面板配置好设备地址,波特率,以下用地址 0x01,波特率 9600,N,1 为例。
 - 2. 设置配方存储组号(如果不需要,直接跳到步骤 3),下面命令将组号设置到 3:
 - T: 01 06 00 00 00 03 C9 CB R: 01 06 00 00 00 03 C9 CB
 - 3. 发送命令使设备进入学习模式:
 - T: 01 06 B0 00 00 01 6E CA R: 01 06 B0 00 00 01 6E CA
 - 4. 设置传感器属性(1 号属性地址: 0x1000,属性内容: 0--无 1--磁性),下面设置 1 号传感器为磁性:
 T: 01 06 10 00 00 02 0C CB
 R: 01 06 10 00 00 02 0C CB
 - 5. 发送命令使设备进入待机状态,保持传感器下方净空:
 - T: 01 06 B0 06 00 00 4F 0B
 - R: 01 06 B0 06 00 00 4F 0B
 - 6. 发送命令使设备进入学习状态:
 T: 01 06 B0 06 00 01 8E CB

R: 01 06 B0 06 00 01 8E CB

7. 发送命令使设备进入零张学习:
T: 01 06 B0 06 00 06 CF 09
R: 01 06 B0 06 00 06 CF 09
等待零张学习完成(查询),然后进入单张学习
T: 01 03 B0 08 00 01 23 08
R: 01 03 02 00 07 F9 86

8. 送入一张片料到传感器正下方并贴紧,发送命令使设备进入单张学习:

T: 01 06 B0 06 00 02 CE CA R: 01 06 B0 06 00 02 CE CA 等待单张学习完成(查询),然后进行下一步 T: 01 03 B0 08 00 01 23 08 R: 01 03 02 00 03 F8 45

9. 发送命令进入工作模式:

T: 01 06 B0 00 00 00 AF 0A R: 01 06 B0 00 00 00 AF 0A

4.7 恢复出厂设置

表 4-6:恢复出厂设置步骤说明

步骤	过程
步骤1	在系统设置界面上,按▲、▼键移动光标到重置选项上,短按 ENTER 键,弹出提示框"恢 复出厂"选择。
步骤 2	选择"否",短按 ENTER 键,返回系统设置界面.选择"是",短按 ENTER 键则进行所有材 料组的删除动作,并有进度条动态显示,面板 3 个 LED 同时闪烁,删除完成后,控制器 自动重启。
	t 选择"是"并执行,会删除所有存储的材料组数据,并且不可恢复。

5 设备故障提示

设备运行过程中,可能会因器件或者操作问题,产生故障,导致设备提示故障,功能码如下:

故障码	故障说明	处理方法
E1	Eeprom 读/写错误	重启主机
E2	磁性传感器不在线	检查传感器是否存在接线松动的情况
E3	保留	
E4	保留	
E5	保留	
E6	磁性功能电压出错	检查输入电压是否正确
E7	学习失败	重新学习

注意 若故障无法成功排除,请联系阿童木售后部门,以获取专业的技术支持与解决方案。

6 维护

```
通常,双张检测器 MDSC-8000S 不需要特殊或定期维护。
如果要处理新类型的钣金和尺寸,则需要为要存储的新组别进行新的示教。
```


7 保修协议

本产品质保期为 18 个月,以机器条码为准。保修期内按照使用说明书正常使用情况下,产品发生故障或损坏,我公司负责免费维修。 保修期内,因以下原因导致损坏,将收取一定的维修费用:

- 因使用上的错误及自行擅自拆卸、修理、改造而导致的机器损坏;
- 由于火灾、水灾、电压异常、其它天灾及二次灾害等造成的机器损坏;
- 购买后由于人为摔落及运输导致的硬件损坏;
- 不按我司提供的用户手册操作导致的机器损坏;
- 因机器以外的障碍(如外部设备因素)而导致的故障及损坏;

在服务过程中如有问题,请及时与我司联系。

客户购买本产品,说明同意了本保修协议。本协议解释权归阿童木(广州)智能科技有限公司。

8 联系我们

如您在使用此产品的过程中有任何问题或需求,请与阿童木(广州)智能科技有限公司工作人员联系。 服务热线:400-0088-976

注: 公司致力于产品的不断完善与优化升级,故产品某些参数更改时,恕不另行通知。

阿童木双张检测,让重叠不再重复

阿童木(广州)智能科技有限公司 Atonm (Guangzhou) In telligent Tech. CO.,LTD

址: 广州市高新技术开发区科学城南翔一路68号 地

官 网: www.atonm.com

客服电话: 400-0088-976

阿童木抖音号

阿童木公众号